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Abstract 

Kernel equating (KE) is a new approach to observed-score equating and is described in detail in 

von Davier, Holland, and Thayer (2004b). Over the past months, several evaluation studies of 

KE have been designed and carried out. In this part of the overall evaluation study, we compared 

the KE method with other equating methods using real data from the program of Praxis Series: 

Professional Assessments for Beginning Teachers®. The goal of this study was to check how 

closely the KE results agree with the results from other observed-score equating methods in 

different operational settings. The equating designs involved include an equivalent-groups (EG) 

design and two nonequivalent groups with anchor test (NEAT) designs with different sample 

sizes and different characteristics. We compared KE with the equating methods that were used 

operationally. The results showed that the differences between KE and the traditional equating 

methods are very small in the EG design, especially in the linear case. In the two NEAT designs, 

the KE version of poststratification equating with optimal bandwidths produced close results to 

its analogue, frequency estimation equipercentile equating, except at the lower score range. The 

KE linear method yielded very similar results to the Tucker method.  
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Introduction 

Test equating methods are used widely to produce scores that are comparable across 

different test forms both within a year and across years. The kernel method of test equating or 

kernel equating (KE) was introduced by Holland and Thayer (1989) and extensively developed by 

von Davier, Holland, and Thayer (2004b).  

The KE method is a rigorously developed statistical procedure that uses a Gaussian kernel 

to continuize the discrete test score distributions, whereas the classical equipercentile equating 

method uses a linear interpolation approach to achieve continuous distributions. As a consequence, 

the KE function, which is a differentiable function, is not expected to  completely agree with the 

classical equipercentile equating function, which is not differentiable. However, the two methods 

typically produce results that are very close and, after rounding, they might result in the same 

equated values. Before implementing a new equating method in an operational setting, it is 

desirable to first demonstrate that the new equating function closely approximates the results from 

the traditional procedure or procedures being used operationally.  

Fortunately, the KE method holds the promise of both approximating the results of several 

commonly used equating methods and of introducing the routine calculation of new and previously 

unavailable measures of statistical accuracy. Moreover, it unifies several classical methods of test 

equating into a single framework, while providing new statistical information that can be used in 

the practice of test equating. KE can achieve the former because it is based on a flexible family of 

equipercentile-like equating functions that contains the linear-equating function as a special case. 

The mathematical and statistical details of KE are reported by von Davier et al. (2004b) and are 

briefly described in Appendix A.  

This study is the second part of a two-part evaluation of the degree to which KE can 

approximate the results of other equating methods. In this part of the overall evaluation study, we 

compared the KE with other methods in several equating designs with different sample sizes and 

different sample characteristics. The goal of this study was to check how closely the KE results 

agreed with the results from other observed-score equating methods in different operational 

settings. We investigated three old data sets from the Praxis™ program and report the comparisons 

of KE with the actual equatings that were used operationally.  

Livingston (1993) conducted a previous study to evaluate KE. That resampling study used 

an equivalent-groups design with an internal anchor test. The anchor-equating design was 
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replicated 50 times for four different, small sample sizes. For each replication of the equating 

design, three separate KEs differing in the bandwidth parameter h were computed and compared 

with chained equipercentile equating of the smoothed and the unsmoothed distributions (the 

smoothing was achieved by using log-linear models) in terms of accuracy. The results of 

Livingston’s study showed that the equated scores produced by KE were slightly more accurate 

than those by the chained equipercentile equating of the smoothed discrete distributions but much 

more accurate than those produced by the chained equipercentile equating of the observed or 

unsmoothed distributions. The KE results differed only slightly across values of the bandwidth 

parameter, except near the ends of the score range, where the large bandwidth value produced 

biased results. The study also showed that KE estimates of the standard errors of equating (SEE) 

were fairly close to the empirical estimates from the 50 replications.  

The rest of this report is structured as follows. First, we briefly introduce the equating 

methods and the equating designs used in this study. We then describe the specific tests and the 

equating designs and methods that have been used operationally. After that, we present the results 

of KE and the comparisons with the operational equating methods. The conclusions are drawn in 

the last section.  

Theoretical Background 

In this section, we introduce the observed-score equating methods and the equating designs 

used in the study. We also describe the KE approximations to the operational equating methods. 

Observed-Score Equating Methods 

There are two test forms to be equated, X and Y, and a target population, T, on which this is 

to be done. Many observed-score equating methods are based on the equipercentile equating 

function. It is defined on the target population, T, as shown in Equation 1:  

eXY;T(x) = GT
-1(FT(x))  (1) 

where FT(x) and GT(y) are the cumulative distribution functions (cdfs), of X and Y, respectively, on 

T. In order for this definition to make sense, we also assume that FT(x) and GT(y) have been made 

continuous or continuized, so that the inverse functions exist for FT(x) and GT(y).  

Several important observed-score equating methods may be viewed as only differing in the 

way that the continuization is achieved. The traditional equipercentile equating method (percentile 
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rank method) uses linear interpolation of the discrete distribution to make it piecewise linear and 

therefore continuous. KE uses Gaussian kernel smoothing to approximate the discrete histogram 

by a continuous density function. Details are given in von Davier et al. (2004b) and briefly 

mentioned in Appendix A.  

Linear equating assumes that FT(x) and GT(y) are continuous and have the same shape 

while differing in mean and variance. The linear equating function, LinXY;T(x), is defined by 

Equation 2: 

LinXY;T(x) = μYT + σYT((x – μXT)/σXT).  (2) 

Theorem 1 of von Davier, Holland, and Thayer (2003; 2004a) showed that any equipercentile 

equating function can be decomposed into the corresponding linear equating function and a 

nonlinear part. In the KE framework, linear equating is a special case of equipercentile equating. 

Equating Designs 

This study involved two major data collection designs, the equivalent-groups (EG) design 

and the nonequivalent groups with anchor test (NEAT) design. 

EG design. The EG design involves two samples of test takers, randomly and 

independently drawn from a population P. In this study, the target population in the EG design is 

considered to be P. 

The two operational tests to be equated, X and Y, are given to two samples of examinees 

from one population, resulting in the data structure shown in Table 1, where 9 denotes the 

presence of data. 

Table 1 

EG Design 

Population Sample X Y 

P G1 9  

P G2  9 

The non-equivalent groups with anchor test design. The NEAT design involves two 

populations of test takers, P and Q (usually different test administrations), and makes use of an 

anchor test to link the two tests. The two operational tests to be equated, X and Y, are given to two 
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samples of examinees from the two populations or administrations. In addition, an anchor test, A, is 

given to both samples from P and Q, as shown in Table 2. The anchor test, A, can be either a part of 

both X and Y (the internal anchor case) or a separate test (the external anchor case). 

Table 2 

NEAT Design 

Population Sample X A Y 

P G1 9 9  

Q G2  9 9 

The target population, T, for the NEAT design is a weighted average of P and Q. P and Q 

are given weights that sum to 1. This is denoted by Equation 3: 

T = wP + (1 – w)Q  (3) 

The partition of T is determined by the weight w (see Angoff, 1971/1984; Kolen & Brennan, 2004; 

or von Davier et al., 2004a, for a discussion of the target population in the NEAT design and of the 

role of the weights).  

In the NEAT design, the two most important test scores, X and Y, are each only observed 

on either P or Q, but not both. Thus, X and Y are not both observed on T, regardless of the choice 

of w. For this reason, assumptions must be made in order to overcome this lack of complete 

information in the NEAT design. The basic task for any equating method in the use of the NEAT 

design is—under acceptable and sufficiently strong assumptions—to obtain the (moments of the) 

distributions of X and Y on T.  

The two classes of observed-score equating methods used in the NEAT design that concern 

us here include chained equating (CE), including the equipercentile and linear methods), and 

poststratification equating (PSE), including the frequency estimation equipercentile (FE) method, 

the Tucker method, and the Braun and Holland (1982) linear method. The details of these methods 

have been described by Kolen and Brennan (2004). 

KE Methods 

KE methods in the EG design. In the EG design, the target population is simply the 

population from which the two groups are sampled, and the two samples provide data that can be 

4 



used to estimate score probabilities on the target population. The traditional observed-equating 

methods for this design include linear equating and equipercentile equating (Kolen & Brennan, 

2004). Linear equating uses a linear relationship to describe the form-to-form differences in 

difficulty. Equipercentile equating uses a curve to describe the form-to-form differences in 

difficulty.  

The KE method is based on the equipercentile definition of equating, and linear equating is 

treated as a special case within the framework. KE uses Gaussian kernel smoothing to approximate 

the discrete score distribution by a continuous density function. By varying the bandwidth values 

(see Step 4 in Appendix A), KE can approximate the equipercentile and linear equating methods. 

When optimal bandwidths are chosen, KE will approximate the traditional equipercentile equating 

method. When the bandwidths used are 10 times the standard deviation of the scores or larger (i.e., 

large bandwidths), the continuized distributions will be nearly normal, in which case the KE 

functions can be regarded as approximately linear. Thus, linear equating can be regarded as a 

special case of equipercentile equating in the framework of the KE. 

KE methods in the NEAT design. In the NEAT design, a variety of equating methods is 

available. In this study, we are concerned with three general cases: (a) PSE, (b) CE, and (c) Levine 

linear methods.  

PSE methods include the frequency estimation, the Tucker observed-score linear method, 

and the Braun and Holland or PSE-linear method (Kolen & Brennan, 2004; von Davier et al., 

2004b). KE methods include approximations to the frequency estimation and the PSE-linear 

methods. When optimal bandwidths are chosen to closely approximate the discrete distribution, 

then the KE version of PSE (KE PSE) will approximate frequency estimation. When large 

bandwidths are chosen (KE PSE-linear), the result will approximate the PSE-linear method. The 

PSE-linear method uses the poststratified score probabilities to compute the mean and variance of 

X and Y on T. These moments then are used to directly compute LinXY;T(x), defined in Equation 2. 

This approach makes different assumptions than does the Tucker linear method, though they are 

related. In the Tucker linear equating, the assumptions regarding the population invariance are 

weaker because they refer only to the first two moments of the conditional distributions of X and Y. 

However, the additional assumptions, linear regression and constant conditional variance, are 

stronger in the sense that linear PSE can have nonlinear regressions of X and Y on A as well as 

nonconstant conditional variances. These conditional moments depend on the data and on the 
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model used to presmooth the bivariate data tables that arise in the NEAT design. Hence, the 

Tucker linear method and the PSE-linear method will agree only in specific circumstances, when 

the regressions of X and Y given A are linear enough and the conditional variances are almost 

constant. 

The second case of observed-score equating with the NEAT design involves the CE 

methods. These include both the chained linear and chained equipercentile methods. These, too, 

may be approximated by KE. The KE version of CE (KE CE) will approximate the chained 

equipercentile method when the small bandwidths are used and will approximate the chained linear 

method (KE CE Lin) when large bandwidths are used. 

The third case is the Levine linear observed-score method. This is a linear method with no 

known curvilinear analogue. It can be justified by the use of classical test theory. However, in the 

present state of development, KE does not have a version that approximates the Levine method. 

Thus, KE should be able to come close to reproducing the usual equipercentile and linear 

methods for both PSE and CE. In our study, there are certain limitations on all the comparisons 

that could be made that are implied by the above discussion, due to limitations of the software that 

we used—GENASYS (ETS, 2004a). For example, GENASYS cannot compute the PSE-linear 

method. Thus, we only could compare the KE with the FE method and the Tucker method using 

GENASYS. A newly developed computer software, KE-Software (ETS, 2004b), will be able to 

perform computation for all the KE methods.  

Data Description 

This study used real data from the Praxis Series: Professional Assessments for Beginning 

Teachers®, which is a set of tests designed for use by state education agencies in making teacher 

licensing decisions. The series covers different subject areas such as mathematics, biology, arts, 

and general science. For each test, different equating designs may be used. Typically, several 

equating methods are conducted operationally for each test. In this study, we applied KE and 

compared it with the other methods that were used operationally in different equating designs. The 

following section gives a description of the data, including the tests and the equating designs used 

in this study. 
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EG Design 

The data for the EG design came from a recent administration of the Praxis Series: Pre-

Professional Skills Test in Mathematics. The Praxis Series: Pre-Professional Skills Test in 

Mathematics is designed to measure the mathematical skills and concepts that an educated adult 

might need. It is a 1-hour test with 40 multiple-choice questions scored as right or wrong. Each 

item is classified into one of three content areas, and the proportions of the three content areas 

range from 25% to 45% of the total test. The two samples of examinees from the same population 

were obtained by the spiraling method. Group 1 took test form X and Group 2 took test form Y (see 

Table 1 for details). Since we know that the spiraling was carried out carefully, we conjecture that 

the difference in the samples might be due to how the spiraling was implemented in various 

batches or centers or to exclusions of test takers for various reasons (leaving the room in first 

minutes or empty papers, for example). 

Table 3 shows the summary statistics for the two tests being equated. From Table 3, we can 

see that the new form is slightly more difficult than the old form.  

Table 3 

Summary Statistics for the Two Test Forms in the EG Design 

Statistic New form (X) Old form (Y) 

N 2,968 3,017 

Mean 24.92 25.23 

Median 24.75 25.44 

SD 7.02 7.57 

Skewness –0.0102 –0.1636 

Kurtosis 2.31 2.22 

Min (Possible min) 6.00 (0.00) 5.00 (0.00) 

Max (Possible max) 40.00 (40.00) 40.00 (40.00) 

In all the operational equatings that have been conducted, the data were smoothed using 

log-linear models (see Holland & Thayer, 2000), as in an EG design. The log-linear model used to 

fit a univariate distribution is Equation 4: 
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e j i j
i

p α β
=

= + ∑ x , (4) 

where the (xj)i is a vector of score functions, α is as normalized constant, and βi is the I free 

parameter to be estimated in the model-fitting process (see Holland & Thayer, 1987, 2000; Moses, 

von Davier, & Casabianca, 2004, for details on the log-linear models.) The value of I determines 

the number of moments of the actual test score distribution that are preserved in the fitted 

distribution. If I = 1, then the fitted distribution preserves the first moment (the mean) of the 

observed distribution. If I = 4, then the fitted distribution preserves the first, second, third, and 

fourth moments (mean, variance, skewness, and kurtosis) of the observed distribution (Holland & 

Thayer, 2000).  

The EG design results in two univariate distributions, denoted by X and Y. In the 

operational equating for these tests, a decision was made (prior to this study) to preserve the first 

five moments for each univariate distribution. Table 4 presents the fit statistics. For these 

univariate distributions, the likelihood ratio statistic and the Freeman-Tukey (FT) chi-square 

(global) statistic (Holland & Thayer, 2000) were expected to be chi-squared distributed with the 

nominal degrees of freedom, df, if the model fit the data. Table 4 shows that both the likelihood 

ratio chi-square and the FT statistics were close to the degrees of freedom. This indicated that the 

model fit the data well. 

Table 4  

Summary of the Fit Measures for the Fitted Log-Linear Models in the EG Design  

Measure New form (X) Old form (Y) 

Moments preserved   5   5 

Likelihood ratio      35.62     30.29 

df 35 35 

FT chi-square      33.50     30.04 

Note. FT = Freeman-Tukey. 

The FT deviates at each score (Holland & Thayer, 2000) also were examined to investigate 

fit. The FT deviates behave roughly like independent standard normal deviates if the model fits 

adequately, so a deviate with an absolute value greater than 3 would be considered large. In this 
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model, the FT deviates scattered randomly around zero, and there were no large FT deviates in 

either distribution. We also checked the fitted versus observed distribution plots and found that the 

smoothed frequencies were, in general, close to the observed frequencies. All these indicated a 

good fit between the raw and smoothed data. 

The equating methods that have been conducted operationally include linear equating and 

equipercentile equating. In this study, we conducted KE with optimal bandwidths and KE with 

large bandwidths using GENASYS (ETS, 2004a). We then compared the KE results with those 

from the linear and nonlinear methods used operationally.  

NEAT Design With Internal Anchor 

The data used for this NEAT design came from two different administrations of the Art: 

Content Knowledge test. The Art: Content Knowledge test is designed for prospective teachers 

who have completed teacher training programs. It is a 2-hour test with 120 multiple-choice 

questions scored as right or wrong, of which 30 are common items. Each item is classified into one 

of three content areas, and the proportions of the three content areas range from 25% to 39% of the 

total.  

Table 5 shows the summary statistics for the two tests and the anchor. The table shows that 

the sample means for group P and group Q on the anchor test A were very close. The ratio of the 

standard deviations on the anchor test in the two groups was 1.01, and the standardized difference 

of means on the anchor test in the two groups was 0.01, where the standardized difference is 

calculated as 
A

AQAP

SD
|| μμ −
 (note that APμ and AQμ  are the means on the anchor in population P 

and population Q, respectively. SDA is the averaged standard deviation of the anchor in the two 

populations). These indicated that the two groups were very similar in their abilities.  

In all the operational equatings that have been conducted, the two bivariate discrete 

observed distributions were smoothed using log-linear models (Holland & Thayer, 2000). Log-

linear models were fitted to the two bivariate distributions, (X + A, A) in P and (Y + A, A) in Q. 

The log-linear model for fitting the bivariate distributions (X + A, A) in P is Equation 5: 
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where  is the joint score probability of the score (xjlp j’, al) (score xj’ on the test X + A and score al 

on the anchor A). The fitting of the model in Equation 5 produces a fitted bivariate distribution that 

preserves TXP moments in the marginal (univariate) distribution of X + A, TAP moments in the 

marginal (univariate) distribution of the anchor A, and IXP, IAP cross-moments in the bivariate  

(X + A, A) distribution. This model is also appropriate for the smoothing of bivariate distributions 

with impossible (X + A, A) score combinations, or structural zeros. Distributions with structural 

zeros arise when (X + A, A) represent the scores of a total test and an internal anchor, so that the 

total test score can never be less than the score on the internal anchor test (Holland & Thayer, 

2000). The same type of model would be fit to the (Y + A, A) frequencies in Q.  

Table 5 

Summary Statistics for the Two Test Forms and the Anchor in the NEAT Design (Internal 

Anchor) 

 Group P Group Q 

Statistic Test (X + A) Anchor A Test (Y + A) Anchor A 

N 524 524 733 733 

Mean 72.76 19.72 81.57 19.78 

Median 72.44 19.73 82.19 19.89 

SD 13.43 4.26 13.57 4.24 

Skewness –0.03 –0.12 –0.20 –0.26 

Kurtosis 2.58 2.61 2.73 2.79 

Min (Poss. min) 38.00 (0.00) 8.00 (0.00) 39.00 (0.00) 7.00 (0.00) 

Max (Poss. max) 105.00(112.00) 30.00 (30.00) 114.00 (120.00) 30.00 (30.00) 

Reliability 0.89 0.70 0.90 0.72 

SEM  4.42 2.34 4.27 2.26 

Correlation a 0.88 0.89 

a Refers to the correlation between the test and the anchor.  

In the equating process for these tests, a decision was made prior to this study to fit a (5 + 5 

+ 1) model for the bivariate distribution of (X + A, A) on P. That means the first five moments for 

the marginal distribution of X + A, the first five for that of A, and the correlation of X and A were 
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preserved. The same model was fit to the distribution of (Y + A, A) on Q. The first and third 

columns of data in Table 6 show the fit statistics for this model. The likelihood ratio chi-square 

statistics do not follow chi-square distributions with those nominal degrees of freedom in the table 

due to the sparseness of data at a large number of score points in the bivariate distributions. As a 

check on the need for the cross-moment included in the model, we also fit a (5 + 5 + 0) model to 

both bivariate distributions. The change in the likelihood ratio chi-square between these two 

models was 773.57 for the new form and 1124.21 for the old form on one degree of freedom. The 

Akaike information criterion (AIC) and consistent Akaike information criterion (CAIC; Akaike, 

1974) are used to evaluate the tradeoff between biased estimates that result from smoothing too 

much and unstable estimates that result from not smoothing enough. The AIC and CAIC both 

decreased substantially when the cross-moment was added. These results gave evidence for the 

need to add the cross-moment to improve the fit.  

Table 6 

Summary of the Fit Measures for the Fitted Log-Linear Models in the NEAT Design 

(Internal Anchor) 

Measure New form (X + A) Old form (Y + A) 

Moments preserved 5 + 5 + 1 5 + 5 + 0 5 + 5 + 1 5 + 5 + 0 

Likelihood ratio 600.97 1374.54 713.45 1837.66 

df 2561 2562 2809 2810 

FT chi-square 418.80 792.45 489.97 1143.00 

AIC 624.97 1396.54 737.45 1859.66 

CAIC 688.11 1454.42 804.61 1921.23 

Note. AIC = Akaike information criterion; CAIC = consistent Akaike information criterion; FT = 

Freeman-Tukey deviate. 

We examined the FT deviates to investigate the fit of the marginal distributions of X + A 

and A in P and Y + A and A in Q. In this data set, FT deviates behaved roughly like independent 

standard normal deviates, and there was only one large value (|FT| > 3) of -4.45 at the score point 

of 61.0 in Y + A. The plots of fitted versus observed distributions did not show large deviates as 

well. For a more detailed examination of the fit of the bivariate distributions, we also checked the 

conditional distributions X + A given A and Y + A given A. The conditional means were nearly 

11 



linear and were well reproduced by the fitted models. There were some discrepancies between the 

fitted and observed conditional standard deviations, but the trends of the two were similar. 

Although other possible models may fit the data better, we decided to keep the (5 + 5 + 1) model 

for KE, because it fit the data reasonably well, and it made more sense to compare KE with the 

operational equating methods using the same presmoothing model.   

The equating methods that have been conducted operationally include the chained linear 

equating, the chained equipercentile equating, and the Tucker equating methods. In this study, we 

computed the FE and compared it and the Tucker method with KE PSE and KE PSE-linear, 

respectively, using GENASYS (ETS, 2004a).  

NEAT Design With External Anchor 

The test forms for this NEAT design came from two different administrations of Social 

Studies: Interpretation of Materials. This test is designed to assess the knowledge and skills for 

prospective beginning teachers of social studies in a secondary school. It is a 1-hour test with five, 

two-part, short-answer essay questions. The scoring of each part in each question is based on a 4-

point scale (0–3), and the score is the sum of the ratings provided by two raters. Five content areas 

are covered, and each constitutes 20% of the test. The external anchor is a separate test called 

Social Studies: Content Knowledge. It is a 2-hour test with 130 multiple-choice questions scored 

as right or wrong. Table 7 shows that the reliabilities of the tests and the anchors and the 

correlations between them are relatively low, which means that the equating results are weaker 

than in the usual circumstances. This is an example of linking of tests coming from a weak 

collection design. We chose this example on purpose to see how the KE performed in such poor 

conditions, and we used linking instead of equating for this special case. The two external anchor 

test forms already had been equated and scaled, and scaled scores on the anchors were used to do 

the linking discussed here. 

Table 7 shows the summary statistics for the two test forms and the anchors. The sample 

size was relatively small compared with the two tests involving the NEAT design with internal 

anchor. The sample mean of group P on the anchor test was higher than that of group Q. The ratio 

of the standard deviation of the anchor tests in the two groups was 0.98, and the standardized 

difference of the means on the anchor test in the two groups was 0.11. These indicated that the two 

groups were similar in their abilities.  
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Table 7 

Summary Statistics for the Two Test Forms and the Anchors in the NEAT Design 

(External Anchor) 

 Population (P) Population (Q) 

Statistic Test (X) Anchor (A1)a Test (Y) Anchor (A2)a

N 100 100 274 274 

Mean 56.92 163.61 57.01 161.72 

Median 55.70 162.50 57.67 161.25 

SD 10.12 16.98 12.43 17.40 

Skewness 0.29 0.14 -0.27 0.09 

Kurtosis 2.23 2.11 2.68 2.41 

Min (Poss. min) 39.00 (0.00) 130.00 (100.00) 23.00 (0.00) 119.00 (100.00) 

Max (Poss. max) 82.00 (90.00) 200.00 (200.00) 83.00 (90.00) 200.00 (200.00) 

Reliability 0.57 0.72 0.68 0.76 

SEM 6.62 9.06 6.98 8.49 

Correlation 0.64 0.72 

a The scores in the external anchors are scaled scores.  

In the operational linking process, a decision was made prior to this study to fit a (3 + 3 + 1) 

model for both the bivariate distribution of (X, A1) on P and that of (Y, A2) on Q. Columns 1 and 3 in 

Table 8 that contain data show the fit statistics for this model. The likelihood ratio chi-square 

statistics do not follow chi-square distributions with those nominal degrees of freedom in the table 

due to the sparseness of data at a large number of score points in the bivariate distributions. As a 

check on the need for the cross-moment included in the model, we also fit a (3 + 3 + 0) model to 

both bivariate distributions. The change in the likelihood ratio chi-square between these two models 

was 52.36 for the new form and 203.84 for the old form on one degree of freedom. Other indices like 

AIC and CAIC decreased substantially when the cross-moment was added. These gave evidence for 

the need to add the cross-moment to improve the fit.  

We also examined FT deviates and found only one large value (|FT|>3) of -3.11 at the scale 

score of 176.0 in A2. The plots of fitted versus observed distributions showed reasonably good fit 

as well. The conditional means were nearly linear and were well reproduced by the fitted model. 
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There were some discrepancies between the fitted and observed conditional standard deviations, 

but the trends across the two tests were similar. All these indicated that the (3 + 3 + 1) model fit 

the data reasonably well. For the same reasons as in the NEAT design with internal anchor, we 

decided to use this smoothing model for the KE in this design. 

Table 8  

Summary of the Fit Measures for the Fitted Log-Linear Models in the NEAT Design 

(External Anchor) 

Measure New form (X) Old form (Y) 

Moments preserved 3+3+1 3+3+0 3+3+1 3+3+0 

Likelihood ratio 627.34 679.70 1251.03 1454.87 

df 9183 9184 9183 9184 

FT chi-square 194.46 196.08 493.82 510.75 

AIC 643.34 693.70 1267.03 1468.87 

CAIC 672.18 718.94 1303.93 1501.16 

Note. AIC = Akaike information criterion; CAIC = consistent Akaike information criterion;  

FT = Freeman-Tukey. 

The equating methods that have been conducted operationally for this linking case include 

the chained linear equating, the chained equipercentile equating, and the Tucker equating. In this 

study, we computed the FE and compared it and the Tucker method with KE PSE and KE PSE-

linear, respectively, using GENASYS (ETS, 2004a).  

Results 

The results of applying the KE method to the three equating designs are presented below. 

In addition, for each design, comparisons are made between the KE results and the results of its 

analogues based on the traditional equating methods. 

EG Design 

KE results. Score distributions were continuized based on the presmoothed distributions 

that preserve the first five moments. The optimal values of hx and hy using Penalty 1 only (see 
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Appendix A) were 0.6039 and 0.5881, respectively. For the KE linear case, we used bandwidths of 

σ10  for both distributions (hx = 70.2, hy = 75.7).  

KE provides a tool called percent relative error (PRE) to investigate how well , in 

other words, the KE function at the discrete values of X approximates the discrete distribution of Y 

(von Davier et al., 2004). The definition of PRE is provided in Appendix A. PRE (p) gives the 

differences between the p

)(ˆ Xey

th moments expressed as a percent of the size of the moment of the score 

being equated. Table 9 shows the PRE values for the KE optimal and KE linear for equating X to 

Y. The PRE values for the KE optimal indicated a good match between the equated function 

computed at the discrete values of X and the target distribution of Y. The PRE values for the KE 

linear indicated a poorer match between the linear equating function at the discrete values of X and 

Y, which resulted from the different shapes of the two distributions.  

Table 9 

The PRE Values for the KE Optimal and KE Linear for Equating X to Y in the EG Design  

Moments PRE (optimal) PRE (linear) 

  1 –0.0022 0.0000 
  2 –0.0022 0.0001 
  3 0.0030 0.3270 
  4 0.0150 1.1186 
  5 0.0338 2.3925 
  6 0.0587 4.1130 
  7 0.0890 6.2290 
  8 0.1240 8.6915 
  9 0.1634 11.4590 
10 0.2067 14.4992 

The SEE for the KE with optimal bandwidths ranged from 0.0314 (at a score of 40) to 

1.5153 (at a score of 4), following a typical shape of the KE SEE. The SEEs for the KE linear were 

U-shaped and were smaller than those from the KE with optimal bandwidths. They ranged from 

0.1242 (at a score of 38) to 0.628 (at a score of 6). 

Comparison with the operational equating results. Figure 1 plots the differences of 

converted scores between equipercentile equating and the KE with optimal bandwidths and the 

differences between linear equating and the KE linear. The difference is in raw score unit. It can be 
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seen from the graph that the KE with optimal bandwidths produced very close results to its 

analogue equipercentile equating, except for some slight differences at the lower score range, but 

the observed differences were at the level of noise in the data as reflected by the SEE. The KE 

linear yielded almost identical results to linear equating. 
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Figure 1. The differences of converted raw scores between KE and its target approximations 

in the EG design.  

Note. EP = equipercentile equating; Lin = linear equating; KE Lin = kernel equating linear method.  

Table 10 gives the summary measure of differences between the KE and its target 

approximations for the EG design. Root mean squared difference (RMSD) is defined as Equation 6: 

22
dsddRMSD += , (6) 

where d is the mean of the differences and sd is the standard deviations of the differences. These 

summary statistics show that the differences between the KE and its target approximations were 

very small, especially in the linear case. All these indicated that the KE approximated well the 

operational equating methods in the EG design case for this particular data set. 
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Table 10 

Summary Measure of Differences Between KE and Its Target Approximations in the EG Design 

Summary EP–KE Lin.–KE Lin. 

Mean diff.   0.0113   0.0004 

SD diff.   0.0354   0.0007 

Max diff.   0.1547   0.0022 

Min diff. -0.0370 -0.0002 

RMSD   0.0371   0.0008 

Note. EP = equipercentile equating; Lin = linear equating; KE Lin = kernel equating linear method; 

RMSD = root mean squared difference. 

NEAT Design With Internal Anchor 

KE results. In the PSE, we used the presmoothed bivariate distributions based on the (5 + 5 

+ 1) model and a weight w of 0.5 to estimate marginal distributions of X + A and Y + A on the 

target population T. The optimal continuization values were 0.7120 for hx and 0.7075 for hy. For 

the KE linear case, we used bandwidths of σ10  for both distributions (hx = 134.3, hy = 135.7). 

Table 11 shows the PRE values for the KE optimal and the KE linear for equating X to Y 

using the poststratification method. The PRE values for the KE optimal indicated a good match 

between the equating function computed at the discrete values of X and the target distribution of Y. 

The PRE values for the KE linear indicated a relatively close match between the linear equating 

function at the discrete values of X and Y, too. This gave some evidence for the similar shape of the 

two distributions.  

The SEE for the KE with optimal bandwidths ranged from 0.5259 (at a score of 74) to 

152.7801 (at a score of 17) following a typical shape of the KE SEE. It is important to note that 

there were no data below the score of 38 on both tests. Frequencies that were used to calculate 

SEEs for this score range were an artifact of the smoothing and continuization processes and were 

based on the model and on data available from other portion of the score range. The SEEs for the 

KE linear were U-shaped and were smaller than those from the KE with optimal bandwidths. They 

ranged from 0.3906 (at a score of 73) to 1.9769 (at a score of 0). 

17 



Table 11 

The PRE Values for the KE Optimal and KE Linear for Equating X to Y in the NEAT Design  

Moments PRE (optimal) PRE (linear) 

1 0.0000 0.0000 

2 0.0000 0.0000 

3 0.0002 0.0347 

4 0.0007 0.1258 

5 0.0015 0.2857 

6 0.0027 0.5211 

7 0.0042 0.8341 

8 0.0062 1.2243 

9 0.0085 1.6893 

            10 0.0112 2.2260 

Comparison with the operational equating results. Figure 2 plots the differences of 

converted scores between the FE method and KE PSE and between the Tucker method and KE 

linear method in the NEAT design. Differences were in the raw score unit, and those greater than 

0.5 were not plotted due to the range of the vertical axis (the largest difference is 1.1 at the score of 

0 between FE and KE PSE). It can be seen from the graph that KE PSE with optimal bandwidths 

produced very close results to its analogue, FE, except at the lower score range. Actually, the 

observed frequencies for scores below 38 were zero on both forms. Therefore, the slight 

differences at the lower score range might not be of practical significance at all. Figure 2 also 

shows that the Tucker method and the KE linear method yielded very similar results. This 

indicated that the regression of tests on the anchor might be linear. 

Table 12 gives the summary measure of differences between the KE and its target 

approximations in the NEAT design. It can be seen that the differences between the KE and its 

target approximations were very small, especially in the linear case. All these indicated the KE 

approximated well the operational PSE methods in the NEAT design with internal anchor.  

18 



-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 20 40 60 80 100 120

Score on X

D
iff

er
en

ce

FE-KE PSE
Tucker-KE Lin

 
Figure 2. The differences of converted raw scores between KE and its target approximations 

in the NEAT design with internal anchor.  

Note. FE = frequency estimation equipercentile equating; KE Lin = KE linear method; PSE = 

poststratification equating. 

Table 12  

Summary Measure of Differences Between KE and its Target Approximations in the NEAT 

Design With Internal Anchor 

Summary FE–KE PSE Tucker–KE Lin 

Mean diff. 0.0243 0.0219 

SD diff. 0.1364 0.0135 

Max diff. 1.0556 0.0472 

Min diff. –0.1048 0.0010 

RMSD 0.1386 0.0257 

Note. FE = frequency estimation equipercentile equating; Lin = Linear; PSE = poststratification 

equating; RMSD = root mean squared difference. 

The operational equating methods used include the chained linear and chained 

equipercentile equating methods. Table B1 in Appendix B shows the equated scores corresponding 

to the selected raw scores for each operational equating method and KE method. 
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NEAT Design With External Anchor 

KE results. In the PSE involving the NEAT design with external anchor, we used the 

presmoothed bivariate distributions based on the (3 + 3 + 1) model and a weight w of 0.5 to 

estimate marginal distributions of X and Y on the target population T. The optimal continuization 

values were 0.6686 for hx and 0.6935 for hy. For the KE linear case, we used bandwidths of 120 for 

both distributions (approximately σ10 ). 

Table 13 shows the PRE values for the KE optimal and KE linear for linking X to Y using 

the PSE method. The PRE values for the KE optimal indicated a good match between the equated 

function computed at the discrete values of X and the target distribution points of Y. The PRE 

values for the KE linear indicated a poor match between the linear equating functions at the 

discrete values of X and Y. This was a result of the different shapes of the two distributions.  

Table 13 

The PRE Values for the KE Optimal and KE Linear for Linking X to Y in the NEAT Design  

Moments PRE (optimal) PRE (linear) 

1  0.0003   0.0000 

2 –0.0013  –0.0002 

3 –0.0010   0.4694 

4  0.0024   1.6724 

5  0.0098   3.7749 

6  0.0212   6.8941 

7  0.0367 11.1235 

8  0.0561 16.5478 

9  0.0794 23.2517 

            10  0.1062 31.3248 

The SEE for the KE with optimal bandwidths ranged from 1.1866 (at a score of 54) to 

9.4639 (at a score of 24), following a typical shape of the KE SEE. The SEEs for KE linear are U-

shaped, and they ranged from 1.0329 (at a score of 54) to 9.1628 (at a score of 10). 

Comparison with the operational equating results. Figure 3 plots the differences of 

converted scores between FE and KE PSE and between the Tucker method and KE linear method 

in the NEAT design with external anchor. Differences were in the raw score unit, and those greater 
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than 0.5 were not plotted due to the range of the vertical axis (the largest difference was 3.4 at the 

score of 0 between FE and KE PSE). It can be seen from the graph that KE PSE with optimal 

bandwidths produced similar results to its analogue, FE, over the range of ability at which most 

examinees scored. The Tucker method and the KE linear method produced very close results. This 

indicated that the regression of the tests on the anchor might be linear. 

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 10 20 30 40 50 60 70 80 90

Score on X

D
iff

er
en

ce

FE-KE PSE
Tucker-KE Lin

 

Figure 3. The differences of converted raw scores between KE and its target approximations 

in the NEAT design with external anchor.  

Note. FE = frequency estimation equipercentile equating; KE Lin = KE linear method; PSE = 

poststratification equating. 

Table 14 gives the summary measure of differences between the KE and its target 

approximations for this NEAT design. The differences between the KE and its target 

approximations were very small in the linear case. In the nonlinear case, the RMSD was bigger 

than that in the other designs. This was mainly caused by the relatively large values of differences 

in the lower score range. Again, since no examinee scored below 20 on either form, these 

relatively large differences in the lower score range might not be of practical significance at all. 

The operational equating methods used also include chained linear and chained 

equipercentile equating methods. Table B2 in Appendix B shows the equated scores corresponding 

to the selected raw scores for each operational equating method and related KE method. 
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Table 14 

Summary Measure of Differences Between KE and its Target Approximations in the NEAT 

Design With External Anchor 

Summary FE–KE PSE Tucker–KE Lin 

Mean diff. 0.3972            –0.0505 

SD diff. 0.8990 0.0725 

Max diff. 3.4198 0.0852 

Min diff.            –0.0571            –0.1624 

RMSD 0.9829 0.0883 

Note. FE = frequency estimation equipercentile equating; KE Lin = KE linear method;  

PSE = poststratification equating; RMSD = root mean squared difference. 

It should be pointed out that if the requirements for equating are not well met, employing a 

sophisticated, almost automatic statistical methodology such as the KE method will not circumvent 

the problem. In this linking case, the item format of the external anchor was different from that of 

the test, and the correlations between the test and the anchor were relatively low. Therefore, one 

should be careful in interpreting the results in this linking case.  

Discussion and Conclusion 

This study applied KE in three equating designs with various sample sizes and 

characteristics and compared the KE results with the results from the operational equating methods 

that the KE approximates. The results in general indicate that KE can approximate the traditional 

equating methods well. In the EG design, when optimal bandwidths are used, the KE results are 

very close to those of the traditional equipercentile equating methods. When large bandwidths are 

used, KE yields almost identical results to the traditional linear equating method for this data set. 

In the NEAT design with internal anchor, the KE version of PSE methods with optimal 

bandwidths produces very close results to its analogue, FE, in most of the score range. The KE 

with large bandwidth produces even closer results to the Tucker method. Similar results are found 

in the NEAT design with external anchor, except that at lower score range, the differences between 

the results of the KE with optimal bandwidths and those of the FE method are relatively large, but 

still at the noise level.  
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The fact that the KE with large bandwidth produces almost identical results to the linear 

method in the EG design is within expectation. It has been mentioned previously that when 

conducting KE, the score distributions are presmoothed with the same log-linear models as those 

used in the operational equatings. Linear equating is based on the means and variances of the 

presmoothed score distributions. The KE function with large bandwidths is approximately linear, 

in which case the estimated KE function is mainly based on the means and standard deviations of 

the continuized distributions. Because the mean and variances of the continuized distribution in the 

KE exactly match those of the presmoothed discrete distribution (von Davier et al., 2004b), it is 

not surprising that the KE function with large bandwidth is very close to the linear equating 

function in the EG design. For similar reasons, the KE with large bandwidth should produce very 

similar results to its analogue, the PSE-linear method, in the NEAT design using the PSE method. 

The fact that it also produces close results to the Tucker method in this study indicates that the 

assumptions for the Tucker method may be satisfied (i.e., the regression of X and Y on V are 

approximately linear, and the conditional variances are almost constant).   

For all three equating designs, the largest differences between the KE with optimal 

bandwidths and its analogues in the operational equating methods occurred at the lower score 

range, where few examinees in the sample scored. These differences may result from the different 

approaches of the two methods to estimate the equating relationships at the lower score range. The 

continuization process in KE may spread the continuous distribution of probability beyond the 

range of the raw scores, whereas the traditional equipercentile equating method does not. For the 

NEAT design with an external anchor, the test forms have low reliabilities, and the correlations of 

the tests with the anchor are low as well. In this case, any equating results are questionable, 

especially those equating methods that use the anchor as a covariate (the PSE methods). The KE 

method will not circumvent this problem, either. Therefore, the results in this case should be 

interpreted carefully. Livingston’s (1993) study showed that KE produces slightly more accurate 

results than chained equipercentile equating methods. Because the true equating relationships are 

unknown in this study, we do not know whether the operational equating methods or KE produced 

more accurate results at the lower score range. However, at these score points the data are sparse 

and the noise is large; therefore, the relatively large differences at these score points may not be of 

practical significance in these equating situations.  
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By using operational equating data from various designs, this study shows that the KE can 

approximate the results of the traditional equating methods well. The results from this study, 

together with the results from the other evaluation study that used pseudo-tests (von Davier et al., 

2005) and the results from Livingston’s (1993) resampling study, show the promise of the KE 

method and increase the confidence of the practitioners in this method.  

Despite this, more research needs to be done to evaluate the performance of the KE in 

equating situations different from those studied here. Given the results of this study, we consider 

that another aspect that needs more research is the accuracy of the results produced by the KE at 

score points where few examinees scored.  
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Appendix A 

An Outline of KE 

Here we give a brief outline of the KE method of observed-score test equating (von Davier 

et al., 2004a). The KE method is discussed in detail in von Davier et al. (2004b) for all of the 

standard equating designs. As mentioned before, the KE method has five basic steps:  

Step 1: Presmoothing 

In this step, the data that are collected in an equating design are presmoothed using 

standard statistical procedures designed to estimate the actual score distributions that arise in the 

equating design. Presmoothing, using various techniques, has become a standard tool in various 

approaches to equipercentile equating. 

We advocate using log-linear models for univariate and bivariate score distributions, as 

discussed in Holland and Thayer (2000), because of their flexibility and ability to accommodate 

the many unusual features of score distributions that arise in practice. The results of this 

presmoothing process are twofold. First, the smoothed score distributions that are needed for the 

rest of the equating process are obtained; second, a matrix that can be used to calculate the 

standard error of equating later on in the process is computed. Every presmoothing method has 

such a matrix, but the log-linear methods have a standard way of finding it in an efficient manner. 

This is discussed in detail in Holland and Thayer (2000). 

Step 2: Estimating Score Distributions for the Target Population 

Once the presmoothing has been done, there are formulas (see Equations A1 and A2), 

depending on the equating design, that use the smoothed score distribution estimates to produce 

estimates of the score probability distributions on T, which we call r and s, where 

rj = P{X = xj|T}, sk = P{Y = yk|T} (A1) 

and the vectors r and s are given by 

r = (r1, . . . , rJ), and s = (s1, . . . , sK). (A2) 

The score probabilities for X are associated with the X-raw scores, {xj}, and those for Y are 

associated with the Y-raw scores, {yk}. Depending on the equating design, the score probabilities, r 
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and s, are computed through the design function, which ranges from the simple identity function to 

the complexities implicit in anchor test methods (von Davier et al., 2004a, chapter 2). 

Step 3: Continuizing the Discrete Score Distributions 

This step is often overlooked in discussions of equipercentile equating methods, but it 

occurs in all of them. We start with discrete score distributions for X and Y on T and turn these into 

continuous score distributions over the whole real line. It is similar to approximating the 

probabilities from the discrete binomial distribution by probabilities from the continuous normal 

distribution. Thus, it is a step that looks like an everyday statistical method but is actually unusual, 

because the entire discrete distribution is changed into a continuous one that is “close” to the 

original in a sense that is often left vague. The KE approach is to make this step explicit and to 

make the sense of the approximation clear. Older equipercentile equating methods replace the 

discrete score distributions by piecewise linear cdfs based on “percentile ranks.” The (Gaussian) 

kernel method of continuizing r uses the formula in Equation A3: 

FT(x; hX) = 
- - (1- )jX X

j
j X X

x a x a
r

h a
⎛ ⎞
⎜⎜
⎝ ⎠

μ
Φ∑ XT ⎟⎟ , (A3) 

where μXT = j j
j

x r∑ , 2
XTσ  = 2( - )j jXT

j
x rμ∑ , and aX = 2 2 2/( )XT XT Xhσ σ + . 

Φ(z) denotes the standard N(0, 1) cdf, x ranges over (−∞,+∞), and hX > 0. FT(x; hX) is the 

continuized cdf based on the discrete score distribution determined by r and {xj}. μXT and 2
XTσ , 

given above, are the moments of X on T. 

The continuized GT(y, hY) is computed in a similar way using the score probabilities from s, 

and the Y-scores, {yk}. An essential feature of Gaussian kernel continuization is the choice of the 

bandwidths, hX and hY. We recommend using a penalty function to select the bandwidths 

automatically to make the new and continuized density functions, fT(x; hX) and gT(y, hY), derived 

from FT(x; hX) and GT(y, hY), both smooth and able to track the essential features of the discrete 

score probabilities (that have been previously estimated by the log-linear models).  

We have found the following penalty functions (see Equation A4) to give good results. 
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PENALTY1(h) = 
j

∑ [(rj/dj) – fT(xj; h)]2, (A4) 

where dj is the width of the interval associated with the score xj (often these widths are all set equal 

to 1). We also place a penalty of 1 for every score point where the density fT(x; h) is U-shaped 

around it, as shown in Equation A5:  

PENALTY2(h) = (1- )j j
j

A B∑  (A5) 

where Aj = 1 if the derivative of fT(x; h) with respect to x, u(x; h), is less than 0 a little to the left of 

xj, and BBj = 0 if u(x; h) > 0 a little to the right of xj. What “near” means is a parameter of 

PENALTY2(h), and we can combine the two penalties with a weight, as shown in Equation A6: 

PENALTY1(h) + K*PENALTY2(h)  (A6) 

We have found K = 1 to be useful in several applications where there are teeth or gaps in 

the distribution that need to be smoothed out. Brent’s algorithm (Brent, 1973) can be used to 

minimize these penalty functions in order to choose h. Separate continuizations of the two discrete 

score distributions are carried out, resulting in FT(x; hX) and GT(y; hY). 

Step 4: Computing and Diagnosing the Equating Function 

Once all the above work is done, the KE equipercentile equating function can be computed 

directly as the function composition shown in Equation A7: 

eXY(x) = GT
-1(FT(x; hX); hY)  (A7) 

where GT
-1(p; hY) denotes the inverse of p = GT(y; hY).  

The function eXY(x) is designed to exactly match the two continuized distributions, but we 

really want to know how well it does for the discrete distributions. What is important about an 

equating function is how well eXY(X), as the function of the discrete X, matches the discrete target-

distribution, Y. In order to assess this match, we compare the moments of the two distributions, 

eXY(X) and Y (up to the 10th), via the PRE in the pth moment formula (see Equation A8):  

let μp(Y) = Σk (yk)psk, and μp(eY(X)) = Σj (eY(xj))prj , then 
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PRE(p) = 100x[μp(eY(X)) − μp(Y)]/ μp(Y). (A8) 

Step 5: Computing the Standard Error of Equating and Related Accuracy Measures 

The SEE for eXY(x) depends on three factors that correspond to the above four steps—(a) 

presmoothing, (b) computing r and s from the smoothed data, and (c) the combination of 

continuization and the mathematical form of the equating function from Step 4. Being based on 

analytical formulas, KE allows us to use the Taylor expansion or delta method to compute the SEE 

for a variety of equating designs. This observation allows a general computing formula for the SEE 

to be devised for KE that reflects presmoothing, the equating design, and the use of Gaussian 

kernel smoothing for continuizing the discrete cdfs. The SEE difference discussed in von Davier et 

al. (2004b) is a new tool, unique to KE, for evaluating the degree to which KE and linear equating 

agree. Moreover, the SEE difference can be used to assess the difference between two equating 

functions that depend on the same parameters. 
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Appendix B 

Equated Scores Corresponding to Selected Raw Scores, NEAT Design 

Table B1 

Equated Scores Corresponding to Selected Raw Scores, by Each Equating Method, NEAT 
Design With Internal Anchor 

Raw score on Form X 

(percentage below on X in P) 

43 

< 1% 

63 

23.5% 

73 

50% 

82 

73% 

102 

99% 

Corresponding score on Form Y, as determined by       

Chained linear 51.16 71.47 81.62 90.76 111.07

Tucker 51.21 71.50 81.64 90.77 111.06

Kernel, poststratification, large bandwidth 51.18 71.48 81.63 90.76 111.05

Levine observed-score 51.09 71.43 81.60 90.75 111.08

Chained equipercentile 50.94 71.42 81.67 90.92 111.25

Frequency estimation equipercentile 50.37 71.60 81.86 90.86 110.23

Kernel, poststratification, optimal bandwidth 50.36 71.60 81.86 90.86 110.24

Table B2 

Equated Scores Corresponding to Selected Raw Scores, by Each Equating Method, NEAT 
Design With External Anchor 

Raw score on Form X 

(percentage below on X in P) 

39 

0% 

50 

27% 

56 

49% 

64 

73% 

82 

99% 

Corresponding score on Form Y, as determined by .      

Chained linear 36.90 50.07 57.26 66.84 88.40 

Tucker 36.15 49.51 56.80 66.51 88.37 

Kernel, poststratification, large bandwidth 36.23 49.55 56.82 66.51 88.31 

Chained equipercentile 35.17 50.71 58.21 67.31 83.52 

Frequency estimation equipercentile 33.37 50.21 58.01 67.10 83.09 

Kernel, poststratification, optimal bandwidth 33.36 50.20 58.01 67.10 83.11 
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